# Digital Material Modeling and Simulation Case study of the design and optimization of Macro-DICE. Hardware Implementation: - [VoxRob](https://gitlab.cba.mit.edu/bej/voxrob) - [rover](https://gitlab.cba.mit.edu/ccameron/rover) <img src="./Dice_Voxrob.png" width="100%" /> <img src="./Dice_Voxrob_2.png" width="100%" /> ---- ## Steps 1. Find Goal - CNN to learn target (instructions) from Image - [Progress](https://gitlab.cba.mit.edu/amiraa/physical-computing-design-tools/-/blob/master/02_Presentation/CNN/CNN.md) - Create/get data to train 2. Auto Encoder to find latent representation for it 3. Control Strategy based on the - Train using the simulator + WANN - [Progress](../AI_that_grows/AI_grow.md) 4. Fit Arbitrary Graph/data flow on DICE - [Progress](https://gitlab.cba.mit.edu/amiraa/physical-computing-design-tools/-/blob/master/02_Presentation/prob/prob.md) 5. Assembly and Testing - [Meso-dice assembly](https://gitlab.cba.mit.edu/zfredin/meso-dice) - [Robotic assembly](https://gitlab.cba.mit.edu/amiraa/swarm-morphing/-/blob/master/Science_Robotics_Paper/LOI.md) --- ## Simulation Environment ### Rover - [Check Control Function Graph](https://amiraa.pages.cba.mit.edu/physical-computing-design-tools/01_Code/physical_computing_interface/graph/control/control.html) <img src="./1rover4.gif" width="40%" /> <img src="./1rover2.gif" width="40%" /><br/> <img src="./1rover1.gif" width="40%" /> <img src="./1rover3.gif" width="40%" /> - [Simulation Demo](https://amiraa.pages.cba.mit.edu/metavoxels-code/demos/indexRover.html) - [Progress](https://gitlab.cba.mit.edu/amiraa/metavoxels/-/blob/master/02_Presentation/robotics/rover/rover.md) ### Wal <img src="./walker.gif" width="80%" /> - [Progress](https://gitlab.cba.mit.edu/amiraa/metavoxels/-/blob/master/02_Presentation/robotics/walking/walking.md) ---- ## Optimization - Two level optimization - Shape (body) => [Hierarchal Local Online Shape Optimization](https://gitlab.cba.mit.edu/amiraa/metavoxels/-/blob/master/02_Presentation/top_opt/search.md) - Control (mind) => [AI that grows](../AI_that_grows/AI_grow.md) - Simultaneous optimization of shape and control --- ## Robotics Design Using the [MetaVoxel simulation tool](https://gitlab.cba.mit.edu/amiraa/metavoxels): <img src="./dice_assembly.gif" width="80%" /><br/> --- ## Assembly - Option for different kinds of assembly (swarm assembly) <img src="./assembly.gif" width="80%" /> <br/> ---