diff --git a/host/trace_skeleton.py b/host/trace_skeleton.py
deleted file mode 100644
index 280189a0730a184b4b4185813adbab5dfedc664f..0000000000000000000000000000000000000000
--- a/host/trace_skeleton.py
+++ /dev/null
@@ -1,334 +0,0 @@
-# trace_skeleton.py
-# Trace skeletonization result into polylines
-#
-# Lingdong Huang 2020
-
-import numpy as np
-
-# binary image thinning (skeletonization) in-place.
-# implements Zhang-Suen algorithm.
-# http://agcggs680.pbworks.com/f/Zhan-Suen_algorithm.pdf
-# @param im   the binary image
-def thinningZS(im):
-  prev = np.zeros(im.shape,np.uint8);
-  while True:
-    im = thinningZSIteration(im,0);
-    im = thinningZSIteration(im,1)
-    diff = np.sum(np.abs(prev-im));
-    if not diff:
-      break
-    prev = im
-  return im
-
-# 1 pass of Zhang-Suen thinning 
-def thinningZSIteration(im, iter):
-  marker = np.zeros(im.shape,np.uint8);
-  for i in range(1,im.shape[0]-1):
-    for j in range(1,im.shape[1]-1):
-      p2 = im[(i-1),j]  ;
-      p3 = im[(i-1),j+1];
-      p4 = im[(i),j+1]  ;
-      p5 = im[(i+1),j+1];
-      p6 = im[(i+1),j]  ;
-      p7 = im[(i+1),j-1];
-      p8 = im[(i),j-1]  ;
-      p9 = im[(i-1),j-1];
-      A  = (p2 == 0 and p3) + (p3 == 0 and p4) + \
-           (p4 == 0 and p5) + (p5 == 0 and p6) + \
-           (p6 == 0 and p7) + (p7 == 0 and p8) + \
-           (p8 == 0 and p9) + (p9 == 0 and p2);
-      B  = p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9;
-      m1 = (p2 * p4 * p6) if (iter == 0 ) else (p2 * p4 * p8);
-      m2 = (p4 * p6 * p8) if (iter == 0 ) else (p2 * p6 * p8);
-
-      if (A == 1 and (B >= 2 and B <= 6) and m1 == 0 and m2 == 0):
-        marker[i,j] = 1;
-
-  return np.bitwise_and(im,np.bitwise_not(marker))
-
-
-def thinningSkimage(im):
-  from skimage.morphology import skeletonize
-  return skeletonize(im).astype(np.uint8)
-
-def thinning(im):
-  try:
-    return thinningSkimage(im)
-  except:
-    return thinningZS(im)
-
-#check if a region has any white pixel
-def notEmpty(im, x, y, w, h):
-  return np.sum(im) > 0
-
-
-# merge ith fragment of second chunk to first chunk
-# @param c0   fragments from first  chunk
-# @param c1   fragments from second chunk
-# @param i    index of the fragment in first chunk
-# @param sx   (x or y) coordinate of the seam
-# @param isv  is vertical, not horizontal?
-# @param mode 2-bit flag, 
-#             MSB = is matching the left (not right) end of the fragment from first  chunk
-#             LSB = is matching the right (not left) end of the fragment from second chunk
-# @return     matching successful?             
-# 
-def mergeImpl(c0, c1, i, sx, isv, mode):
-
-  B0 = (mode >> 1 & 1)>0; # match c0 left
-  B1 = (mode >> 0 & 1)>0; # match c1 left
-  mj = -1;
-  md = 4; # maximum offset to be regarded as continuous
-  
-  p1 = c1[i][0 if B1 else -1];
-  
-  if (abs(p1[isv]-sx)>0): # not on the seam, skip
-    return False
-  
-  # find the best match
-  for j in range(len(c0)):
-    p0 = c0[j][0 if B0 else -1];
-    if (abs(p0[isv]-sx)>1): # not on the seam, skip
-      continue
-    
-    d = abs(p0[not isv] - p1[not isv]);
-    if (d < md):
-      mj = j;
-      md = d;
-
-  if (mj != -1): # best match is good enough, merge them
-    if (B0 and B1):
-      c0[mj] = list(reversed(c1[i])) + c0[mj]
-    elif (not B0 and B1):
-      c0[mj]+=c1[i]
-    elif (B0 and not B1):
-      c0[mj] = c1[i] + c0[mj]
-    else:
-      c0[mj] += list(reversed(c1[i]))
-    
-    c1.pop(i);
-    return True;
-  return False;
-
-HORIZONTAL = 1;
-VERTICAL = 2;
-
-# merge fragments from two chunks
-# @param c0   fragments from first  chunk
-# @param c1   fragments from second chunk
-# @param sx   (x or y) coordinate of the seam
-# @param dr   merge direction, HORIZONTAL or VERTICAL?
-# 
-def mergeFrags(c0, c1, sx, dr):
-  for i in range(len(c1)-1,-1,-1):
-    if (dr == HORIZONTAL):
-      if (mergeImpl(c0,c1,i,sx,False,1)):continue;
-      if (mergeImpl(c0,c1,i,sx,False,3)):continue;
-      if (mergeImpl(c0,c1,i,sx,False,0)):continue;
-      if (mergeImpl(c0,c1,i,sx,False,2)):continue;
-    else:
-      if (mergeImpl(c0,c1,i,sx,True,1)):continue;
-      if (mergeImpl(c0,c1,i,sx,True,3)):continue;
-      if (mergeImpl(c0,c1,i,sx,True,0)):continue;
-      if (mergeImpl(c0,c1,i,sx,True,2)):continue;      
-    
-  c0 += c1
-
-
-# recursive bottom: turn chunk into polyline fragments;
-# look around on 4 edges of the chunk, and identify the "outgoing" pixels;
-# add segments connecting these pixels to center of chunk;
-# apply heuristics to adjust center of chunk
-# 
-# @param im   the bitmap image
-# @param x    left of   chunk
-# @param y    top of    chunk
-# @param w    width of  chunk
-# @param h    height of chunk
-# @return     the polyline fragments
-# 
-def chunkToFrags(im, x, y, w, h):
-  frags = []
-  on = False; # to deal with strokes thicker than 1px
-  li=-1; lj=-1;
-  
-  # walk around the edge clockwise
-  for k in range(h+h+w+w-4):
-    i=0; j=0;
-    if (k < w):
-      i = y+0; j = x+k;
-    elif (k < w+h-1):
-      i = y+k-w+1; j = x+w-1;
-    elif (k < w+h+w-2):
-      i = y+h-1; j = x+w-(k-w-h+3); 
-    else:
-      i = y+h-(k-w-h-w+4); j = x+0;
-    
-    if (im[i,j]): # found an outgoing pixel
-      if (not on):     # left side of stroke
-        on = True;
-        frags.append([[j,i],[x+w//2,y+h//2]])
-    else:
-      if (on):# right side of stroke, average to get center of stroke
-        frags[-1][0][0]= (frags[-1][0][0]+lj)//2;
-        frags[-1][0][1]= (frags[-1][0][1]+li)//2;
-        on = False;
-    li = i;
-    lj = j;
-  
-  if (len(frags) == 2): # probably just a line, connect them
-    f = [frags[0][0],frags[1][0]];
-    frags.pop(0);
-    frags.pop(0);
-    frags.append(f);
-  elif (len(frags) > 2): # it's a crossroad, guess the intersection
-    ms = 0;
-    mi = -1;
-    mj = -1;
-    # use convolution to find brightest blob
-    for i in range(y+1,y+h-1):
-      for j in range(x+1,x+w-1):
-        s = \
-          (im[i-1,j-1]) + (im[i-1,j]) +(im[i-1,j+1])+\
-          (im[i,j-1]  ) +   (im[i,j]) +    (im[i,j+1])+\
-          (im[i+1,j-1]) + (im[i+1,j]) +  (im[i+1,j+1]);
-        if (s > ms):
-          mi = i;
-          mj = j;
-          ms = s;
-        elif (s == ms and abs(j-(x+w//2))+abs(i-(y+h//2)) < abs(mj-(x+w//2))+abs(mi-(y+h//2))):
-          mi = i;
-          mj = j;
-          ms = s;
-
-    if (mi != -1):
-      for i in range(len(frags)):
-        frags[i][1]=[mj,mi]
-  return frags;
-
-
-# Trace skeleton from thinning result.
-# Algorithm:
-# 1. if chunk size is small enough, reach recursive bottom and turn it into segments
-# 2. attempt to split the chunk into 2 smaller chunks, either horizontall or vertically;
-#    find the best "seam" to carve along, and avoid possible degenerate cases
-# 3. recurse on each chunk, and merge their segments
-# 
-# @param im      the bitmap image
-# @param x       left of   chunk
-# @param y       top of    chunk
-# @param w       width of  chunk
-# @param h       height of chunk
-# @param csize   chunk size
-# @param maxIter maximum number of iterations
-# @param rects   if not null, will be populated with chunk bounding boxes (e.g. for visualization)
-# @return        an array of polylines
-# 
-def traceSkeleton(im, x, y, w, h, csize, maxIter, rects):
-  
-  frags = []
-  
-  if (maxIter == 0): # gameover
-    return frags;
-  if (w <= csize and h <= csize): # recursive bottom
-    frags += chunkToFrags(im,x,y,w,h);
-    return frags;
-  
-  ms = im.shape[0]+im.shape[1]; # number of white pixels on the seam, less the better
-  mi = -1; # horizontal seam candidate
-  mj = -1; # vertical   seam candidate
-  
-  if (h > csize): # try splitting top and bottom
-    for i in range(y+3,y+h-3):
-      if (im[i,x]  or im[(i-1),x]  or im[i,x+w-1]  or im[(i-1),x+w-1]):
-        continue
-      
-      s = 0;
-      for j in range(x,x+w):
-        s += im[i,j];
-        s += im[(i-1),j];
-      
-      if (s < ms):
-        ms = s; mi = i;
-      elif (s == ms  and  abs(i-(y+h//2))<abs(mi-(y+h//2))):
-        # if there is a draw (very common), we want the seam to be near the middle
-        # to balance the divide and conquer tree
-        ms = s; mi = i;
-  
-  if (w > csize): # same as above, try splitting left and right
-    for j in range(x+3,x+w-2):
-      if (im[y,j] or im[(y+h-1),j] or im[y,j-1] or im[(y+h-1),j-1]):
-        continue
-      
-      s = 0;
-      for i in range(y,y+h):
-        s += im[i,j];
-        s += im[i,j-1];
-      if (s < ms):
-        ms = s;
-        mi = -1; # horizontal seam is defeated
-        mj = j;
-      elif (s == ms  and  abs(j-(x+w//2))<abs(mj-(x+w//2))):
-        ms = s;
-        mi = -1;
-        mj = j;
-
-  nf = []; # new fragments
-  if (h > csize  and  mi != -1): # split top and bottom
-    L = [x,y,w,mi-y];    # new chunk bounding boxes
-    R = [x,mi,w,y+h-mi];
-    
-    if (notEmpty(im,L[0],L[1],L[2],L[3])): # if there are no white pixels, don't waste time
-      if(rects!=None):rects.append(L);
-      nf += traceSkeleton(im,L[0],L[1],L[2],L[3],csize,maxIter-1,rects) # recurse
-    
-    if (notEmpty(im,R[0],R[1],R[2],R[3])):
-      if(rects!=None):rects.append(R);
-      mergeFrags(nf,traceSkeleton(im,R[0],R[1],R[2],R[3],csize,maxIter-1,rects),mi,VERTICAL);
-    
-  elif (w > csize  and  mj != -1): # split left and right
-    L = [x,y,mj-x,h];
-    R = [mj,y,x+w-mj,h];
-    if (notEmpty(im,L[0],L[1],L[2],L[3])):
-      if(rects!=None):rects.append(L);
-      nf+=traceSkeleton(im,L[0],L[1],L[2],L[3],csize,maxIter-1,rects);
-    
-    if (notEmpty(im,R[0],R[1],R[2],R[3])):
-      if(rects!=None):rects.append(R);
-      mergeFrags(nf,traceSkeleton(im,R[0],R[1],R[2],R[3],csize,maxIter-1,rects),mj,HORIZONTAL);
-    
-  frags+=nf;
-  if (mi == -1  and  mj == -1): # splitting failed! do the recursive bottom instead
-    frags += chunkToFrags(im,x,y,w,h);
-  
-  return frags
-
-
-if __name__ == "__main__":
-  import cv2
-  import random
-
-  im0 = cv2.imread("../test_images/opencv-thinning-src-img.png")
-
-  im = (im0[:,:,0]>128).astype(np.uint8)
-
-  # for i in range(im.shape[0]):
-  #   for j in range(im.shape[1]):
-  #     print(im[i,j],end="")
-  #   print("")
-  # print(np.sum(im),im.shape[0]*im.shape[1])
-  im = thinning(im);
-
-  # cv2.imshow('',im*255);cv2.waitKey(0)
-
-  rects = []
-  polys = traceSkeleton(im,0,0,im.shape[1],im.shape[0],10,999,rects)
-  
-
-  for l in polys:
-    c = (200*random.random(),200*random.random(),200*random.random())
-    for i in range(0,len(l)-1):
-      cv2.line(im0,(l[i][0],l[i][1]),(l[i+1][0],l[i+1][1]),c)
-
-  cv2.imshow('',im0);cv2.waitKey(0)
-