inverse_homogenization.md
-
Amira Abdel-Rahman authoredAmira Abdel-Rahman authored
- Inverse Homogenization
- Elasticity (Constitutive) Tensor
- Optimization Problem Formulation
- Numerical Optimization
- Mechanical Properties and Symmetry
- For square symmetry:
- For isotropy:
- Homogenized Mechanical Properties:
- Bulk Modulus:
- Youngs Modulus:
- Shear Modulus:
- Poisson Ration:
- Penalization of Intermediate Densities:
- Sensitivities
- Mechanical Properties
- Mechanical Symmetries
Inverse Homogenization
Elasticity (Constitutive) Tensor
Optimization Problem Formulation
\begin{aligned}
& \underset{\phi}{\text{minimize}}
& & f(C^H(\phi,D^{(i)})) \\
& \text{subject to}
& & K (\phi)d^{(i)}=F(\phi)^{(i)} \ \ \ \forall \ i \\
& & & g(C^H(\phi,D^{(i)})) \geq g_{min} \\
& & & \sum_{e\in \Omega}{\rho_e}v_e \leq V_{max} \\
& & & \phi_{min}\leq \phi_n \leq \phi_{max} \ \ \forall \ \ n \in \Omega \\
& & & d^{(i)} \ \ is \ \ \Omega-periodic \\
\end{aligned}
-
f
is the objective function -
\phi
design variables -
K(\phi)
global stiffness matrix -
g
constraints like square symmetry or isotropy -
C^H
homogenized constitutive matrix - Applying strain fields,
d^{(i)}
displacementsf^{(i)}
force vectors associated with the strain field
Numerical Optimization
For a linear elastic homogeneous material:
- the stress tensor is symmetric (
\alpha_{ij}=\alpha_{ji}
) - constitutive matrix also symmetric
C^H_{ij}=C^H_{ji}
- constitutive matrix for the mechanical properties in 2D:
C^H_{2D}=
\begin{bmatrix}
C^H_{11} & C^H_{12} & C^H_{13}\\
C^H_{12} & C^H_{22} & C^H_{23} \\
C^H_{13} & C^H_{23} & C^H_{33}
\end{bmatrix}
- We apply test strain fields
\varepsilon^{0(i)}
to the unit cell. - Due to the symmetry it is sufficient to apply three test strain fields.
- The test fields consider normal strain state in the
x_1
andx_2
directions as well as a state of pure shear.
\varepsilon^{0(11)}=
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} \ , \
\varepsilon^{0(22)}=
\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} \ , \
\varepsilon^{0(12)}=
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
The element contributions to the strain energy q^e_{ij}
can be calculated from the nodal displacement vectors:
q_{ij}^e= \frac{1}{|\Omega|}(d_0^{e(i)}-d^{e(i)})^TK^e(d_0^{e(j)}-d^{e(j)})
-
d_0^{e(i)}
andd^{e(i)}
are the applied and resulting nodal displacements for the elemente
corresponding to the test field(i)
-
K^e
element stiffness matrix - Then the element contribution is normalized by the size of the unit cell
- The components of the effective constitutive matrix are found as the sum of all element contributions to the strain energy withing the unit cell
C^H_{ij}=\sum_{e \in \Omega}q^e_{ij}
Mechanical Properties and Symmetry
For square symmetry:
C_{13}=C_{23}=C_{31}=C_{32}=0
C_{11}=C_{22}
C^H_{2D,\ sq}=
\begin{bmatrix}
C_{11} & C_{12} & 0 \\
C_{12} & C_{11} & 0 \\
0 & 0 & C_{33}
\end{bmatrix}
Error can be formulated as:
error_{sq}= (C^H_{11}-C^H_{22})^2 + (C^H_{13})^2 + (C^H_{23})^2
For isotropy:
C_{13}=C_{23}=C_{31}=C_{32}=0
C_{11}=C_{22}
C_{33}=\frac{1}{2}(C_{11}-C_{12})
C^H_{2D,\ iso}=
\begin{bmatrix}
C_{11} & C_{12} & 0 \\
C_{12} & C_{11} & 0 \\
0 & 0 & \frac{1}{2}(C_{11}-C_{12})
\end{bmatrix}
error_{iso} = error_{sq}+ (C^H_{11}-(C^H_{12}+2C^H_{33}))^2+(C^H_{22}-(C^H_{12}+2C^H_{33}))^2
To prevent trivial solutions we normalize by the square of the objective value:
error =\frac{error_{sym}}{f^2}
Homogenized Mechanical Properties:
- Bulk modulus-
B^H
- Young's modulus-
E^H
- Shear modulus-
G^H
- Poisson's ratio-
\nu^H
Using square symmetry, based on Hooke's law where we can describe the stresses in terms of the strains and components of the constitutive matrix:
\sigma_{11}=C_{11}\varepsilon_{11} + C_{12}\varepsilon_{22}\\
\sigma_{22}=C_{12}\varepsilon_{11} + C_{22}\varepsilon_{22}\\
\tau{12}=C_{33}\varepsilon_{12}\\
Bulk Modulus:
Ratio of hydrostatic stress to the relative volume change.
A state of hydrostatic stress where \sigma_{11}=\sigma{22}=\sigma
is applied:
B=\frac{\sigma}{\Delta V/ V}=\frac{\sigma}{\varepsilon_{11}+\varepsilon_{22}} \\
\therefore \sigma=(C_{11}+C_{12})\varepsilon \\
\therefore B=\frac{1}{2}(C_{11}+C_{12})
With symmetry C_{11}=C{22}
, then the objective is taken as an average over the bulk moduli in the x_1
and x_2
directions:
B^H=\frac{1}{2}(\frac{1}{2}(C^H_{11}+C^H_{22})+C^H_{12}) \\
B^H_{3D}=\frac{1}{6}((C^H_{11}+C^H_{22}+C^H_{33})+C^H_{12}+C^H_{23}+C^H_{13})
Youngs Modulus:
For x_1
based on Hooke's law:
E_{11}=\frac{\sigma_{11}}{\varepsilon_{11}}
Therefore it can be found by considering a uniaxial stress state where \sigma_{22}=\tau_{12}=0
, hence:
\sigma_{11}=C_{11}\varepsilon_{11}+C_{12}\varepsilon_{22} \\
0 = C_{12}\varepsilon_{11}+C_{22}\varepsilon_{22} \\
\therefore \varepsilon_{22}=- \frac{C_{12}}{C_{22}}\varepsilon_{11} \\
\therefore \sigma_{11}= C_{11}\varepsilon_{11}- \frac{(C_{12})^2}{C_{22}}\varepsilon_{11} \\
\therefore E_{11}=C_{11}-\frac{(C_{12})^2}{C_{22}} \\
With square symmetry, the objective will be:
E^H=\frac{1}{2} (C_{11}+C_{22})-\frac{2(C_{12})^2}{C_{11}+C_{22}}
Shear Modulus:
Pure shear is when \sigma_{11}=\sigma_{22}=0
:
\tau_{12}=G_{12}\varepsilon_{12}\\
\therefore G^H=C^H_{33} \\
G^H_{3D}=\frac{1}{3}(C^H_{33}+C^H_{44}+C^H_{55})
Poisson Ration:
It is the negative of the ration of the transverse strain to the axial strain:
\nu_{12}=-\frac{\varepsilon_{22}}{\varepsilon_{11}}
A uniaxial stress state is considered: \sigma_{22}=\tau_{12}=0
\nu_{12}=\frac{C_{12}}{C_{11}} \\
\therefore \nu^H= \frac{2C^H_{12}}{C^H_{11}+C^H_{22}} \\
\nu^H_{3D}= \frac{C^H_{12}+C^H_{23}+C^H_{13}}{C^H_{11}+C^H_{22}+C^H_{33}}
Penalization of Intermediate Densities:
Using SIMP:
K^e(\phi)=(\rho_e^\eta+\rho_{min}^e)K^e_0
q_{ij}^e= \frac{1}{|\Omega|}(d_0^{e(i)}-d^{e(i)})^TK^e_0(d_0^{e(j)}-d^{e(j)})
C^H_{ij}=\sum_{e\in\Omega}(\rho_e^\eta+\rho_{min}^e)q_{ij}^e
Sensitivities
Mechanical Properties
Using an adjoint method the sensitivity of C^H_{ij}
is:
\frac{\delta C^H_{ij}}{\delta \rho_e}=\eta \rho_e^{\eta-1}q^e_{ij}
\frac{\delta B^H}{\delta \rho_e}= \frac{\eta \rho_e^{\eta-1}}{2}(\frac{1}{2}(q^e_{11}+q^e_{22})+q^e_{12})
\frac{\delta E^H}{\delta \rho_e}=\eta \rho_e^{\eta-1}(\frac{q^e_{11}+q^e_{22}}{2} - \frac{4C^H_{12}q^e_{12}}{C^H_{11}+C^H_{22}} + \frac{2(C^H_{12})^2}{(C^H_{11}+C^H_{22})^2}(q^e_{11}+q^e_{22}))
\frac{\delta G^H}{\delta \rho_e}= \eta \rho_e^{\eta-1} q^e_{33}
\frac{\delta \nu^H}{\delta \rho_e}=2 \eta \rho_e^{\eta-1}(\frac{q^e_{12}}{C^H_{11}+C^H_{22}}- \frac{C^H_{12}}{(C^H_{11}+C^H_{22})^2}(q^e_{11}+q^e_{22}))
Mechanical Symmetries
\frac{\delta error}{\delta \rho_e}
=\frac{\delta }{\delta \rho_e}(\frac{error_{sym}}{f^2})
=\frac{1}{f^2} \frac{\delta error_{sym}}{\delta \rho_e}- 2 \frac{error_{sym}}{f^3}\frac{\delta f}{\delta \rho_e}
\frac{\delta error_{sq}}{\delta \rho_e}
= 2 \eta \rho_e^{\eta-1} ((C^H_{11}-C^H_{22})(q^e_{11}-q^e_{22})
+ C^H_{13} q^e_{13} + C^H_{23} q^e_{23} )
\frac{\delta error_{iso}}{\delta \rho_e}
= error_{sq} \\
+ 2 \eta \rho_e^{\eta-1}(
(C^H_{11}-(C^H_{12}+2C^H_{33})) (q^e_{11}-(q^e_{12}+2q^e_{33})) \\
+ (C^H_{22}-(C^H_{12}+2C^H_{33})) (q^e_{22}-(q^e_{12}+2q^e_{33}))
)