Select Git revision
inverse_homogenization.md
inverse_homogenization.md 7.38 KiB
Inverse Homogenization
Elasticity (Constitutive) Tensor
Optimization Problem Formulation
\begin{aligned}
& \underset{\phi}{\text{minimize}}
& & f(C^H(\phi,D^{(i)})) \\
& \text{subject to}
& & K (\phi)d^{(i)}=F(\phi)^{(i)} \ \ \ \forall \ i \\
& & & g(C^H(\phi,D^{(i)})) \geq g_{min} \\
& & & \sum_{e\in \Omega}{\rho_e}v_e \leq V_{max} \\
& & & \phi_{min}\leq \phi_n \leq \phi_{max} \ \ \forall \ \ n \in \Omega \\
& & & d^{(i)} \ \ is \ \ \Omega-periodic \\
\end{aligned}
-
f
is the objective function -
\phi
design variables -
K(\phi)
global stiffness matrix -
g
constraints like square symmetry or isotropy -
C^H
homogenized constitutive matrix - Applying strain fields,
d^{(i)}
displacementsf^{(i)}
force vectors associated with the strain field
Numerical Optimization
For a linear elastic homogeneous material:
- the stress tensor is symmetric (
\alpha_{ij}=\alpha_{ji}
) - constitutive matrix also symmetric
C^H_{ij}=C^H_{ji}
- constitutive matrix for the mechanical properties in 2D:
C^H_{2D}=
\begin{bmatrix}
C^H_{11} & C^H_{12} & C^H_{13}\\
C^H_{12} & C^H_{22} & C^H_{23} \\
C^H_{13} & C^H_{23} & C^H_{33}
\end{bmatrix}
- We apply test strain fields
\varepsilon^{0(i)}
to the unit cell. - Due to the symmetry it is sufficient to apply three test strain fields.
- The test fields consider normal strain state in the
x_1
andx_2
directions as well as a state of pure shear.
\varepsilon^{0(11)}=
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} \ , \
\varepsilon^{0(22)}=
\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} \ , \
\varepsilon^{0(12)}=
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
The element contributions to the strain energy q^e_{ij}
can be calculated from the nodal displacement vectors:
q_{ij}^e= \frac{1}{|\Omega|}(d_0^{e(i)}-d^{e(i)})^TK^e(d_0^{e(j)}-d^{e(j)})
-
d_0^{e(i)}
andd^{e(i)}
are the applied and resulting nodal displacements for the elemente
corresponding to the test field(i)
-
K^e
element stiffness matrix - Then the element contribution is normalized by the size of the unit cell
- The components of the effective constitutive matrix are found as the sum of all element contributions to the strain energy withing the unit cell
C^H_{ij}=\sum_{e \in \Omega}q^e_{ij}