Skip to content
Snippets Groups Projects
Select Git revision
  • 36d8ff97be084ce0527a04029b11e49759c7960f
  • master default protected
2 results

inverse_homogenization.md

Blame
  • user avatar
    Amira Abdel-Rahman authored
    8d055ea6
    History
    inverse_homogenization.md 7.38 KiB

    Inverse Homogenization

    Based on 1 and 2.

    Elasticity (Constitutive) Tensor

    Optimization Problem Formulation

    \begin{aligned}
    & \underset{\phi}{\text{minimize}}
    & & f(C^H(\phi,D^{(i)})) \\
    & \text{subject to}
    & & K (\phi)d^{(i)}=F(\phi)^{(i)} \ \ \ \forall \ i  \\
    & & & g(C^H(\phi,D^{(i)})) \geq g_{min} \\
    & & & \sum_{e\in \Omega}{\rho_e}v_e \leq V_{max} \\
    & & & \phi_{min}\leq \phi_n \leq \phi_{max} \ \  \forall \ \  n \in \Omega \\
    & & & d^{(i)} \ \  is \ \  \Omega-periodic \\
    \end{aligned}
    • f is the objective function
    • \phi design variables
    • K(\phi) global stiffness matrix
    • g constraints like square symmetry or isotropy
    • C^H homogenized constitutive matrix
    • Applying strain fields, d^{(i)} displacements f^{(i)} force vectors associated with the strain field

    Numerical Optimization

    For a linear elastic homogeneous material:

    • the stress tensor is symmetric (\alpha_{ij}=\alpha_{ji})
    • constitutive matrix also symmetric C^H_{ij}=C^H_{ji}
    • constitutive matrix for the mechanical properties in 2D:
    C^H_{2D}=
    \begin{bmatrix}
    C^H_{11} & C^H_{12} & C^H_{13}\\
    C^H_{12} & C^H_{22} & C^H_{23} \\
    C^H_{13} & C^H_{23} & C^H_{33} 
    \end{bmatrix}
    • We apply test strain fields \varepsilon^{0(i)} to the unit cell.
    • Due to the symmetry it is sufficient to apply three test strain fields.
    • The test fields consider normal strain state in the x_1 and x_2 directions as well as a state of pure shear.
    \varepsilon^{0(11)}=
    \begin{bmatrix}
    1 \\
    0 \\
    0 
    \end{bmatrix} \ , \ 
    \varepsilon^{0(22)}=
    \begin{bmatrix}
    0 \\
    1 \\
    0 
    \end{bmatrix} \ , \ 
    \varepsilon^{0(12)}=
    \begin{bmatrix}
    0 \\
    0 \\
    1 
    \end{bmatrix} 

    The element contributions to the strain energy q^e_{ij} can be calculated from the nodal displacement vectors:

    q_{ij}^e= \frac{1}{|\Omega|}(d_0^{e(i)}-d^{e(i)})^TK^e(d_0^{e(j)}-d^{e(j)})
    • d_0^{e(i)} and d^{e(i)} are the applied and resulting nodal displacements for the element e corresponding to the test field (i)
    • K^e element stiffness matrix
    • Then the element contribution is normalized by the size of the unit cell
    • The components of the effective constitutive matrix are found as the sum of all element contributions to the strain energy withing the unit cell
    C^H_{ij}=\sum_{e \in \Omega}q^e_{ij}

    Mechanical Properties and Symmetry

    For square symmetry: