Skip to content
Snippets Groups Projects
Commit 89c3d874 authored by Amira Abdel-Rahman's avatar Amira Abdel-Rahman
Browse files

space time topology optimization initial

parent ed18684d
No related branches found
No related tags found
No related merge requests found
Pipeline #11486 failed
......@@ -30,8 +30,13 @@ Main library/code in [here.](https://gitlab.cba.mit.edu/amiraa/metavoxels-code/-
<img src="./micr_3d/macroU_1.gif" width="40%" />
<img src="./micr_3d/microU_1.gif" width="40%" /><br></br>
## [5. Space-Time Topology Optimization](./top_opt/space_time/space_time.md)
## [5. Hybrid Cellular Automata (Online non-gradient based Optimization)](./top_opt/online.md)
<img src="./space_time/animXPhys_0.gif" width="40%" />
<img src="./space_time/animtPhys_0.gif" width="40%" /><br></br>
## [6. Hybrid Cellular Automata (Online non-gradient based Optimization)](./top_opt/online.md)
<img src="./search2.gif" width="40%" /><br></br>
......
02_Presentation/top_opt/space_time/animXphys_0.gif

59.4 KiB

02_Presentation/top_opt/space_time/animtPhys_0.gif

9.86 KiB

02_Presentation/top_opt/space_time/bridgeProblem.png

362 KiB

# Space Time Topology Optimization
In space-time topology optimization, structural properties may be evaluated not only for the final (complete) structure, but also for the incomplete structure, i.e., at intermediate stages of the manufacturing process. Based on this paper ["Space-time topology optimization for additive manufacturing"](https://link.springer.com/article/10.1007/s00158-019-02420-6) from TU Delft.
## Objective Function
```math
\quad J(\boldsymbol{\rho}, \boldsymbol{t}) = J_{complete}(\boldsymbol{\rho},\boldsymbol{t}) + \theta * J_{process}(\boldsymbol{\rho}, \boldsymbol{t}),
```
## Problem Formulation
```math
\begin{aligned}
&\underset{{\boldsymbol{\phi}, \boldsymbol{\tau}}}{\min}
& & c=\boldsymbol{U}^{\mathsf{T}}\boldsymbol{K}(\boldsymbol{\rho}) \\
& \text{subject to}
& & \boldsymbol{K}(\boldsymbol{\rho})\boldsymbol{U} = \boldsymbol{F} \\
& & & \sum\limits_{e} \rho_{e} v_{e} \leq V_{0} \\
& & & 0 \le \phi_{e} \le 1, \\
& & & 0 \le \tau_{e} \le 1, \\
& & & V^{[{T}_{i}]}= \sum_{e} \rho^{[{T}_{i}]}_{e} v_{e} \le \frac{i}{N} V_{0}& & & & & i=1,2,...,N ,\\
& & & \frac{1}{\#(\mathcal{M})} \sum\limits_{e\in \mathcal{M}} H(g(t_{e})) < \epsilon,\\
\end{aligned}
```
- $N$ is the number of stages
- Intermediate structures:
```math
\rho^{[{T}]}_{e} = \left\{\begin{array}{llll} \rho_{e}, & \text{if } t_{e} \le {T}, \\ 0, & \text{otherwise.} \end{array}\right.
```
- Continuity constraints on intermediate structures (preventing isolated material patches):
```math
g(t_{e}) = \min\limits_{i \in \mathcal{N}_{e}} (t_{i}) - t_{e} \le 0, \ \ \ \forall e\in \mathcal{M},
```
- $`\mathcal{N}_{e}`$ et of elements adjacent to element $`e`$.
- $`\mathcal{M}`$ is the set of active elements in the design domain.
- Since the above function is non-differentiable, a relaxation can be made:
```math
\min\limits_{i \in \mathcal{N}_{e}} (t_{i}) = 1 - \max\limits_{i \in \mathcal{N}_{e}} (1 - t_{i}),\\
\max\limits_{i \in \mathcal{N}_{e}} (1 - t_{i}) \approx (\sum\limits_{i \in \mathcal{N}_{e}}(1-t_{i})^{p})^{\frac{1}{p}}\\
g(t_{e}) \approx 1 - (\sum\limits_{i \in \mathcal{N}_{e}}(1-t_{i})^{p})^{\frac{1}{p}} - t_{e} \\
\max\limits_{e\in \mathcal{M}} (g(t_{e})) \le 0, \\
{\mathcal{H}(\boldsymbol{t})=}\frac{1}{\#(\mathcal{M})} \sum\limits_{e\in \mathcal{M}} {H}(g(t_{e})) < \epsilon \\
{H}(x)=\left\{ \begin{array}{llll} 1, & & x > 0, \\ 0, & & x \le 0 . \end{array} \right. \approx \frac{1}{2} \left( \tanh{(\beta_{m} x)} + 1\right),
```
---
# Bridge Design
<img src="./bridgeProblem.png" width="80%" /><br></br>
## $`\theta`$=0 (penal=5,rmin=1.5)
<img src="./animXPhys_0.gif" width="80%" /><br></br>
<img src="./animtPhys_0.gif" width="80%" /><br></br>
## $`\theta`$=0.5
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment