Skip to content
Snippets Groups Projects
Select Git revision
  • c58120a5c1dacc450a3cdb47702aeccc0ff6eac0
  • master default
2 results

atsams70.md

Blame
  • inverse_homogenization.md 7.38 KiB

    Inverse Homogenization

    Based on 1 and 2.

    Elasticity (Constitutive) Tensor

    Optimization Problem Formulation

    \begin{aligned}
    & \underset{\phi}{\text{minimize}}
    & & f(C^H(\phi,D^{(i)})) \\
    & \text{subject to}
    & & K (\phi)d^{(i)}=F(\phi)^{(i)} \ \ \ \forall \ i  \\
    & & & g(C^H(\phi,D^{(i)})) \geq g_{min} \\
    & & & \sum_{e\in \Omega}{\rho_e}v_e \leq V_{max} \\
    & & & \phi_{min}\leq \phi_n \leq \phi_{max} \ \  \forall \ \  n \in \Omega \\
    & & & d^{(i)} \ \  is \ \  \Omega-periodic \\
    \end{aligned}
    • f is the objective function
    • \phi design variables
    • K(\phi) global stiffness matrix
    • g constraints like square symmetry or isotropy
    • C^H homogenized constitutive matrix
    • Applying strain fields, d^{(i)} displacements f^{(i)} force vectors associated with the strain field

    Numerical Optimization

    For a linear elastic homogeneous material:

    • the stress tensor is symmetric (\alpha_{ij}=\alpha_{ji})
    • constitutive matrix also symmetric C^H_{ij}=C^H_{ji}
    • constitutive matrix for the mechanical properties in 2D: