Select Git revision
atsams70.md
inverse_homogenization.md 7.38 KiB
Inverse Homogenization
Elasticity (Constitutive) Tensor
Optimization Problem Formulation
\begin{aligned}
& \underset{\phi}{\text{minimize}}
& & f(C^H(\phi,D^{(i)})) \\
& \text{subject to}
& & K (\phi)d^{(i)}=F(\phi)^{(i)} \ \ \ \forall \ i \\
& & & g(C^H(\phi,D^{(i)})) \geq g_{min} \\
& & & \sum_{e\in \Omega}{\rho_e}v_e \leq V_{max} \\
& & & \phi_{min}\leq \phi_n \leq \phi_{max} \ \ \forall \ \ n \in \Omega \\
& & & d^{(i)} \ \ is \ \ \Omega-periodic \\
\end{aligned}
-
f
is the objective function -
\phi
design variables -
K(\phi)
global stiffness matrix -
g
constraints like square symmetry or isotropy -
C^H
homogenized constitutive matrix - Applying strain fields,
d^{(i)}
displacementsf^{(i)}
force vectors associated with the strain field
Numerical Optimization
For a linear elastic homogeneous material:
- the stress tensor is symmetric (
\alpha_{ij}=\alpha_{ji}
) - constitutive matrix also symmetric
C^H_{ij}=C^H_{ji}
- constitutive matrix for the mechanical properties in 2D: