Newer
Older
## Description
Repository for DICE design tools explorations.
Topics include:
- Programming strategies for spacial computing
- Data flow programming and [Distributed Deep Neural Networks](https://gitlab.cba.mit.edu/amiraa/ddnn)
- Physics Simulation
- Trusted Systems
- Reconfiguration strategies for DICE pieces
- CAM tools and path planing:
- Desktop (external) assembler
- Swarm assembly and manipulation
----
- **"Physical Computing Interface"**
- [Assembler Control Demo](https://amiraa.pages.cba.mit.edu/physical-computing-design-tools/01_Code/physical_computing_interface/index.html)
- [Voxel Simulation Demo](https://amiraa.pages.cba.mit.edu/physical-computing-design-tools/01_Code/physical_computing_interface/indexSimulation.html)
- [Convolutional Neural Network (CNN) Demo](https://amiraa.pages.cba.mit.edu/physical-computing-design-tools/01_Code/physical_computing_interface/demos/indexDNN.html)
- **"Performance Calculation Graph"** demo lives [here.](https://amiraa.pages.cba.mit.edu/physical-computing-design-tools/01_Code/physical_computing_interface/probabilisticProjections/index.html)
- [Distributed Deep Neural Networks](https://gitlab.cba.mit.edu/amiraa/ddnn)
- UR10 voxel Assembly [demo.](https://amiraa.pages.cba.mit.edu/physical-computing-design-tools/01_Code/physical_computing_interface/assembly/standAloneAssembly.html)
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
### Applications
- The most effieceint applications for dice are those who need reconfiguration white running, examples:
- probabilistic programming (Gamalon)
- more computing power while assembling voxels
- Neural Networks?
#### Voxel Simulation

#### Convolutional Neural Networks

----
### Capabilities and Updates
- Design
- Parametric grid definition (cubic, hexagonal, dice)
- Assembly/timeline
- Timeline for future morphing computing
- UR10
- Graph
- Hierarchy
- Automatic neighborhood
- highlights
- Computing
- Asynchronous code propagation (distributed max example)
- Simple test case find max value distributed
- Min cut max flow concept study neighborhood
- Improved UI and integration
- Radial menu
- Json propagation
- Highlight selected node
---
### Hardware Architecture Inference
#### Probabilistic Programming
- [Gamalon](https://gamalon.com/)
- Using Dice pieces to do **inference**
- in order to find the best configuration based on its performance
- other tasks
- [WebPPL: ](http://webppl.org/) probabilistic programming for the web
- Probabilistic Graphical Models
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
In order to map the hardware architecture to an input dataflow program or computation graph, I modeled the hardware and software models as probabilistic graphical model, and used probabilistic programming to infer the best hardware architecture choices that will optimize the speed, energy and cost of the system.
I used [WebPPL](http://dippl.org/chapters/02-webppl.html) a probabilistic programming language in javascript. I model the variables I want to infer as if they come from different types of distributions that integrate our priors in them. In the following example I am using markov chain monte carlo as an inference method.
[The demo lives here.](https://amiraa.pages.cba.mit.edu/physical-computing-design-tools/01_Code/physical_computing_interface/probabilisticProjections/index.html)
The structure of the probabilistic program looks like this:
```javascript
var model=function (){
var chipType=function () { return uniformDraw(["STM32F412","samd51j19","samd51j20","MAX32660","STM32F412","XMEGA"])};
var chip=processors.type[chipType()];
//display(chip.name);
var ram=chip.ram;
var cyclesPerSecond =chip.cyclesPerSecond;
var bitsPerSecond =chip.bitsPerSecond ;
var costPerChip =chip.costPerChip ;
var flopsPerWatt =chip.flopsPerWatt ;
var interconnect=mem(function (model) { return uniformDraw([2,4,6])});
var nodesNumber= mem(function (model) { return uniformDraw([10,20,30,40,50])});
var dataExchangeSize=mem(function (model) {return gaussian(1e3, 10)});
var memoryPerComputation=mem(function (model) {return gaussian(10e3, 10)});
var numberofComputations=mem(function (model) {return gaussian(200, 10)}); //nodes of similar computations
var computation = mem(function (model) {return gaussian(100, 20)});
var maxNumberOfInterconnects= mem(function (model) {return gaussian(10, 2)});
doCalculation();
var speed=computationTime+communicationTime; //frame
var cost=nodesNumber("DICE")*costPerChip;
var energy= 1 / flopsPerWatt*numberofNodesNeeded*computationTime;//per frame
condition(speed<0.0012 && cost<180);
// return [speed,cost,energy]
if(result==1){
return chip.name;
}else if(result==2){
return interconnect("DICE");
}else{
return nodesNumber("DICE");
}
}
var result=3;
var options = {method: 'MCMC', kernel: 'MH', samples: 10000}
var dist = Infer(options, model)
viz(dist)
display('Expected nodesNumber: ' + expectation(dist))
expectation(dist)
```
Until now I have a dummy computation model. Next steps would be to get a complex computational graph and for each part infer the best hardware architecture for it. Moreover, if the computation graph changes through time one can also alter the hardware architecture to respond to these changes.
## Desired Milestones
- [ ] Assembly
- [ ] Swarm construction
- [ ] Computation
- [ ] Morphing code
- [ ] Computation Optimization
- [ ] Restructuring code and automatically divide into distributed
- [ ] Auto compilation/export to dice modules
- [ ] Simulation portal
- [ ] Case Studies
- [ ] Neural networks
- [ ] Bayesian optimization
- [ ] Distributed optimization
- [ ] Voxel design
- [ ] Documentation
- [ ] in depth documentation of how to do everything
- [ ] Assembly
- [ ] fix errors
- [ ] Add real Dice info
- [ ] computation delay and communaction cost
- [ ] CAD?
- [ ] Select
- [ ] improve selected visualization
- [ ] when selecting group show bounding box
- [ ] Hierarchy
- [ ] place multiple voxels
- [ ] change code of mutiple voxels
- [ ] select multiple dice pieces
- [ ] create groups
- [ ] Bugs:
- [ ] change grid like Jiri's
- [ ] fix assembler
- [ ] when remove node pix pickup list
- [ ] get the pickup list from occupancy